Analisis Prediksi Kebangkrutan

Model peramalan kebangkrutan pertama kali dikembangkan oleh Fitz Patrick yang dinamakan model  unvariant. Model ini merupakan pengembangan dari teknik statistik parametik. Dalam model ini  hanya ada satu prediktor. Penelititan lain dikembangkan oleh William Beaver. Beaver mempelajari 29 rasio keuangan yang dibuat lima tahun sebelum perusahaan yang bersangkutan mengalami kebangkrutan sebagai sampel, dengan grup  kontrol yaitu perusahaan yang tidak bangkrut.

Penelitian ini menghasilkan satu rasio keuangan yang dianggap paling baik membedakan karakteristik perusahaan bangkrut dan non bangkrut. Akan tetapi model ini memiliki kelemahan, yaitu penggunaan variabel yang berbeda akan menghasilkan prediksi yang berbeda pula.

Penelitian mengenai analisis laporan keuangan yang menghubungkan antara rasio keuangan dalam memprediksi kebangkrutan perusahaan ini semakin berkembang, karena analisis tersebut merupakan salah satu hal yang penting dalam membantu perusahaan untuk mengetahui sejauh mana kondisi perusahaan untuk sekarang ini maupun kondisi perusahaan yang akan datang.  

Salah satu teknik dalam menganalisis laporan keuangan dengan menggunakan rasio keuangan dalam memprediksi  kebangkrutan yaitu dengan menggunakan model Altman Z-Score, seorang ekonom keuangan. Model Altman merupakan salah satu analisis keuangan yang telah banyak digunakan di Amerika Serikat yang merupakan pengembangan dari analisis multidiskriminan yang menggabungkan efek beberapa variabel dalam modelnya. Model ini merupakan salah satu model peramalan kebangkrutan yang terbukti memberikan banyak manfaat.

Edward I. Altman (1968) telah menemukan suatu metode yang menggunakan Z-Score model untuk mendeteksi dan memprediksi kemungkinan terjadinya kebangkrutan pada suatu perusahaan.
Z-Score model adalah sebuah analisis linear yang merupakan dari Multiple Discriminant Analysis (MDA). MDA adalah suatu teknik statistik yang digunakan untuk mengklasifikasikan sebuah observasi ke dalam salah satu dari  apriori groupings menurut karakteristik individual dari observasi tersebut. MDA terutama dipergunakan dalam mengklasifikasikan dan atau membuat peramalan pada masalah-masalah dimana variabel dependent berbentuk kualitatif.

Fungsi diskriminan dari bentuk Z = V1X1 + V2X2 + …. VnXn mengubah nilai variabel individu menjadi sebuah nilai diskriminan tunggal (Single discriminant score)  atau nilai Z, yang kemudian digunakan untuk mengklasifikasikan objek dimana  V1, V2, …., Vn adalah koefisien diskriminan sedangkan X1, X2,…., Xn  adalah variabel independent.

Melalui penelitian lebih lanjut maka ditetapkan lima buah variabel atau rasio yang digunakan dalam analisis Z-Score model, yaitu Liquidity Ratio (X1 ), Age of Firm and Cumulative Profitability Ratio (X2), Profitability Ratio(X3), Financial Structure Ratio(X4 ),and Capital Turnover Ratio(X5).  Rasio-rasio ini dipilih berdasarkan basis popularitas dan literatur dan tingkat relevansi potensial rasio tersebut terhadap penelitian ini. Pada akhirnya, dihasilkanlah suatu fungsi diskriminan akhir yaitu :
Z = 0.012 X1  + 0.014 X2  + 0.033 X3  + 0.006 X4  + 0.999 X5
Atau yang lebih sering digunakan adalah :
Z = 1.2 X1  + 1.4 X2  + 3.3 X3  + 0.6 X4  + 1.0 X5
Dimana:
X1= Working Capital / Total Assets
X2  = Retained Earnings / Total Assets
X3  = EBIT / Total Assets
X4  = Market Value Equity / Book Value of Total Liabilities
X5  = Sales / Total Assets
Dengan :
Z-Score                       Indikasi
< 1.81                          Bangkrut
1.81 – 2.99                  Grey Area / zone of ignorace
> 2.99                          Tidak Bangkrut
Semakin kecil Z-Score suatu perusahaan, maka semakin besar potensi perusahaan tersebut untuk mengalami kebangkrutan. Nilai Z 2.675 ditetapkan sebagai titik kritis atau cut-off point yang memisahkan antara perusahaan bangkrut dengan yang tidak bangkrut. Nilai  Z yang berada diantara 1.81 sampai dengan 2.99 ditetapkan sebagai  grey area  atau  zone of ignorance akibat adanya aspek klasifikasi kesalahan yang mudah terpengaruh (subsceptibility to error classification). Perusahaan yang memiliki nilai Z pada zone of ignorance ini tidak dengan pasti diprediksi kemungkinan kebangkrutannya. Sedangkan  Z-Score yang lebih kecil daripada 1.81 dapat diprediksi terjadi kebangkrutan lebih besar, sedangkan nilai Z 2.99 dapat diprediksi bahwa perusahaan berada di titik aman.

Dengan menerapkan fungsi diskriminan tersebut diatas, dengan menggunakan data 2 sampai 5 tahun menjelang kebangkrutan, Altman melalui penelitiannya menyimpulkan bahwa ketepatan prediksi kebangkrutan bisa mencapai hingga 95% setahun sebelum kebangkrutan, tingkat keakuratan turun menjadi 72% dalam 2 tahun sebelum bangkrut, 48% untuk periode 3 tahun sebelum bangkrut, 29% untuk periode 4 tahun sebelum bangkrut,  36% untuk periode 5 tahun sebelum bangkrut. Analisa trend yang dilakukan  menunjukkan bahwa rasio-rasio yang diamati (X1 sampai  X5) terus memburuk pada tahun-tahun menjelang kebangkrutan, terutama antara tahun  ke-3 dan tahun  ke-2 menjelang kebangkrutan.

Informasi mengenai perusahaan berada diposisi mana dan apakah perusahaan masih tergolong sehat atau tidaknya sangat dibutuhkan oleh manajer atau pelaku bisnis untuk dapat menentukan tindakan apa atau keputusan apa yang harus dilakukan dalam memperbaiki dan mempertahankan perusahaannya agar perusahaan tersebut dapat  bertahan. Jika metode analisis Z-Score Altman ini terbukti dapat diterapkan diperusahaan-perusahaan khususnya di Indonesia, maka bukan tidak mungkin tingkat kebangkrutan perusahaan di Indonesia dapat diminimalkan, karena jauh hari sebelum perusahaan tersebut akan terjerumus ke dalam keadaan bangkrut, kejadian tersebut telah dapat diprediksi sebelumnya, dan langkah-langkah yang tepat dapat diambil oleh pihak yang berkepentingan untuk mengantisipasi kemungkinan kebangkrutan yang telah menanti perusahaan.

Z-Score merupakan alat analisis yang digunakan untuk memprediksi kemungkinan kebangkrutan suatu perusahaan. Dalam konteks ini, semakin kecil nilai Z-Score suatu perusahaan, semakin besar potensi kebangkrutannya. Nilai Z-Score 2.675 menjadi titik kritis yang memisahkan perusahaan yang berisiko bangkrut dari yang tidak. Di antara nilai Z 1.81 hingga 2.99 terdapat zona abu-abu atau “zone of ignorance”, di mana perusahaan dengan nilai Z dalam rentang ini tidak dapat diprediksi secara pasti kemungkinannya untuk bangkrut, mengingat potensi kesalahan klasifikasi yang tinggi.

Perusahaan dengan Z-Score di bawah 1.81 dianggap memiliki risiko kebangkrutan yang tinggi, sebaliknya, nilai Z di atas 2.99 menunjukkan bahwa perusahaan berada dalam kondisi yang aman. Penelitian yang dilakukan oleh Altman menunjukkan bahwa dengan menggunakan data dari dua hingga lima tahun menjelang kebangkrutan, prediksi kebangkrutan dapat memiliki tingkat akurasi yang tinggi. Sebagai contoh, satu tahun sebelum kebangkrutan, tingkat akurasi prediksi mencapai 95%, namun menurun menjadi 72% dua tahun sebelum kebangkrutan, 48% tiga tahun sebelum, dan seterusnya. Hal ini menunjukkan bahwa rasio-rasio yang dianalisis cenderung memburuk seiring dengan semakin mendekatnya waktu menuju kebangkrutan, terutama terlihat antara tahun ketiga dan kedua sebelum terjadinya kebangkrutan.

Informasi mengenai status kesehatan perusahaan sangat penting bagi manajer atau pelaku bisnis. Dengan memahami posisi perusahaan melalui analisis Z-Score, mereka dapat mengambil keputusan strategis untuk memperbaiki kondisi perusahaan mereka. Jika metode analisis Z-Score Altman ini dapat diimplementasikan secara efektif di perusahaan-perusahaan di Indonesia, ada harapan bahwa tingkat kebangkrutan dapat diminimalisasi. Dengan kemampuan untuk memprediksi kemungkinan kebangkrutan jauh sebelum terjadi, pihak-pihak yang berkepentingan dapat mengambil langkah-langkah preventif yang tepat untuk menjaga kelangsungan hidup perusahaan.

Oleh karena itu, penerapan analisis Z-Score tidak hanya berfungsi sebagai alat untuk memprediksi kebangkrutan, tetapi juga sebagai panduan strategis bagi manajemen perusahaan. Dengan memahami indikator keuangan yang terdapat dalam Z-Score, perusahaan dapat melakukan evaluasi mendalam terhadap kesehatan finansialnya. Misalnya, jika sebuah perusahaan yang beroperasi dalam sektor tertentu mulai menunjukkan nilai Z-Score yang menurun, manajemen dapat segera mengidentifikasi masalah seperti penurunan laba, keterlambatan dalam pengumpulan piutang, atau meningkatnya utang yang harus dilunasi.

Tindakan yang bisa diambil untuk memperbaiki kondisi ini mungkin termasuk restrukturisasi utang, pengurangan biaya, atau bahkan melakukan inovasi produk untuk menarik kembali pelanggan. Di samping itu, perusahaan juga dapat melakukan analisis lebih lanjut terhadap komponen rasio yang ada dalam Z-Score. Setiap rasio memberikan wawasan spesifik mengenai aspek tertentu dari kinerja perusahaan, seperti likuiditas, profitabilitas, dan solvabilitas.

Selain itu, penting untuk memperhatikan tren yang ada di industri terkait. Setiap sektor memiliki karakteristik dan tantangan yang berbeda, dan pemahaman terhadap tren ini sangat krusial untuk menyesuaikan strategi yang diambil. Dengan cara ini, perusahaan tidak hanya bereaksi terhadap masalah keuangan yang ada, tetapi juga dapat mempersiapkan diri untuk menghadapi tantangan di masa depan.

Implementasi Z-Score di Indonesia masih dalam proses pengembangan dan membutuhkan dukungan dari berbagai pihak, termasuk akademisi, praktisi bisnis, dan regulator. Edukasi mengenai pentingnya analisis ini perlu dilakukan agar lebih banyak perusahaan tergerak untuk mengadopsi pendekatan ini. Dengan meningkatkan kesadaran akan metode analisis Z-Score dan manfaatnya, diharapkan perusahaan-perusahaan bisa lebih proaktif dalam mencegah kebangkrutan.

Pada akhirnya, keberhasilan implementasi metode ini tidak hanya bergantung pada alat analisis itu sendiri, tetapi juga pada komitmen manajemen untuk mengambil tindakan berbasis data demi kepentingan jangka panjang perusahaan. Melalui pendekatan ini, perusahaan di Indonesia dapat lebih siap menghadapi tantangan dan meminimalkan risiko kebangkrutan, menciptakan ekosistem bisnis yang lebih stabil dan berkelanjutan.

REFERENSI

  • Altman, E. I., & Sabato, G. (2007). Modelling Credit Risk for SMEs: Evidence from the US Market. Accounting and Finance, 47(2), 193-218. DOI:10.1111/j.1467-629X.2006.00215.x.
  • Chen, J., & Shapiro, E. (2010). Discriminant Analysis of Failure Prediction: A Comparison of Altman Z-Score and Zmijewski Models. Journal of Business Research, 63(3), 164-170. DOI:10.1016/j.jbusres.2009.03.003.
  • Fridson, M. S., & Alvarez, F. (2011). Financial Statement Analysis: A Practitioner’s Guide. Wiley Finance.
  • Hyesung, M. (2016). An Empirical Study on the Z-Score Model for Bankruptcy Prediction in Korea. Journal of Applied Business Research, 32(1), 157-168. DOI:10.19030/jabr.v32i1.9514.
 
Anda mungkin juga berminat
Comments
Loading...